Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Biochemistry (Mosc) ; 89(2): 299-312, 2024 Feb.
Article En | MEDLINE | ID: mdl-38622097

A decrease in muscle mass and its functionality (strength, endurance, and insulin sensitivity) is one of the integral signs of aging. One of the triggers of aging is an increase in the production of mitochondrial reactive oxygen species. Our study was the first to examine age-dependent changes in the production of mitochondrial reactive oxygen species related to a decrease in the proportion of mitochondria-associated hexokinase-2 in human skeletal muscle. For this purpose, a biopsy was taken from m. vastus lateralis in 10 young healthy volunteers and 70 patients (26-85 years old) with long-term primary arthrosis of the knee/hip joint. It turned out that aging (comparing different groups of patients), in contrast to inactivity/chronic inflammation (comparing young healthy people and young patients), causes a pronounced increase in peroxide production by isolated mitochondria. This correlated with the age-dependent distribution of hexokinase-2 between mitochondrial and cytosolic fractions, a decrease in the rate of coupled respiration of isolated mitochondria and respiration when stimulated with glucose (a hexokinase substrate). It is discussed that these changes may be caused by an age-dependent decrease in the content of cardiolipin, a potential regulator of the mitochondrial microcompartment containing hexokinase. The results obtained contribute to a deeper understanding of age-related pathogenetic processes in skeletal muscles and open prospects for the search for pharmacological/physiological approaches to the correction of these pathologies.


Hexokinase , Mitochondria , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Reactive Oxygen Species/metabolism , Hexokinase/metabolism , Muscle, Skeletal/metabolism , Aging/physiology , Mitochondria, Muscle/metabolism
2.
Aging Cell ; 23(4): e14098, 2024 Apr.
Article En | MEDLINE | ID: mdl-38379415

Evaluation of the influence of primary and secondary aging on the manifestation of molecular and cellular hallmarks of aging is a challenging and currently unresolved issue. Our study represents the first demonstration of the distinct role of primary aging and chronic inflammation/physical inactivity - the most important drivers of secondary aging, in the regulation of transcriptomic and proteomic profiles in human skeletal muscle. To achieve this purpose, young healthy people (n = 15), young (n = 8) and older (n = 37) patients with knee/hip osteoarthritis, a model to study the effect of long-term inactivity and chronic inflammation on the vastus lateralis muscle, were included in the study. It was revealed that widespread and substantial age-related changes in gene expression in older patients relative to young healthy people (~4000 genes regulating mitochondrial function, proteostasis, cell membrane, secretory and immune response) were related to the long-term physical inactivity and chronic inflammation rather than primary aging. Primary aging contributed mainly to the regulation of genes (~200) encoding nuclear proteins (regulators of DNA repair, RNA processing, and transcription), mitochondrial proteins (genes encoding respiratory enzymes, mitochondrial complex assembly factors, regulators of cristae formation and mitochondrial reactive oxygen species production), as well as regulators of proteostasis. It was found that proteins associated with aging were regulated mainly at the post-transcriptional level. The set of putative primary aging genes and their potential transcriptional regulators can be used as a resource for further targeted studies investigating the role of individual genes and related transcription factors in the emergence of a senescent cell phenotype.


Proteome , Transcriptome , Humans , Aged , Proteome/genetics , Proteome/metabolism , Transcriptome/genetics , Sedentary Behavior , Proteomics , Muscle, Skeletal/metabolism , Inflammation/genetics , Inflammation/metabolism
3.
Physiol Genomics ; 55(10): 468-477, 2023 10 01.
Article En | MEDLINE | ID: mdl-37545425

Obesity- and type 2 diabetes mellitus-induced changes in the expression of protein-coding genes in human skeletal muscle were extensively examined at baseline (after an overnight fast). We aimed to compare the early transcriptomic response to a typical single meal in skeletal muscle of metabolically healthy subjects and obese individuals without and with type 2 diabetes. Transcriptomic response (RNA-seq) to a mixed meal (nutritional drink, ∼25 kJ/kg of body mass) was examined in the vastus lateralis muscle (1 h after a meal) in 7 healthy subjects and 14 obese individuals without or with type 2 diabetes. In all obese individuals, the transcriptome response to a meal was dysregulated (suppressed and altered) and associated with different biological processes compared with healthy control. To search for potential transcription factors regulating transcriptomic response to a meal, the enrichment of transcription factor-binding sites in individual promoters of the human skeletal muscle was examined. In obese individuals, the transcriptomic response is associated with a different set of transcription factors than that in healthy subjects. In conclusion, metabolic disorders are associated with a defect in the regulation of mixed meal/insulin-mediated gene expression-insulin resistance in terms of gene expression. Importantly, this dysregulation occurs in obese individuals without type 2 diabetes, i.e., at the first stage of the development of metabolic disorders.NEW & NOTEWORTHY In skeletal muscle of metabolically healthy subjects, a typical single meal normalized to body mass induces activation of various transcription factors, expression of numerous receptor tyrosine kinases associated with the insulin signaling cascade, and transcription regulators. In skeletal muscle of obese individuals without and with type 2 diabetes, this signaling network is poorly regulated at the transcriptional level, indicating dysregulation of the early gene response to a mixed meal.


Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Obesity/genetics , Obesity/metabolism , Muscle, Skeletal/metabolism , Insulin/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
J Appl Physiol (1985) ; 134(5): 1256-1264, 2023 05 01.
Article En | MEDLINE | ID: mdl-37055032

We aimed to explore the effect of the 3-day dry immersion, a model of physical unloading, on mitochondrial function, transcriptomic and proteomic profiles in a slow-twitch soleus muscle of six healthy females. We registered that a marked reduction (25-34%) in the ADP-stimulated respiration in permeabilized muscle fibers was not accompanied by a decrease in the content of mitochondrial enzymes (mass spectrometry-based quantitative proteomics), hence, it is related to the disruption in regulation of respiration. We detected a widespread change in the transcriptomic profile (RNA-seq) upon dry immersion. Downregulated mRNAs were strongly associated with mitochondrial function, as well as with lipid metabolism, glycolysis, insulin signaling, and various transporters. Despite the substantial transcriptomic response, we found no effect on the content of highly abundant proteins (sarcomeric, mitochondrial, chaperon, and extracellular matrix-related, etc.) that may be explained by long half-life of these proteins. We suggest that during short-term disuse the content of some regulatory (and usually low abundant) proteins such as cytokines, receptors, transporters, and transcription regulators is largely determined by their mRNA concentration. These mRNAs revealed in our work may serve as putative targets for future studies aimed at developing approaches for the prevention of muscle deconditioning induced by disuse.NEW & NOTEWORTHY Three-day dry immersion (a model of physical unloading) substantially changes the transcriptomic profile in the human soleus muscle, a muscle with predominantly slow-twitch fibers and strong postural function; despite this, we found no effect on the muscle proteome (highly abundant proteins). Dry immersion markedly reduces ADP-stimulated respiration; this decline is not accompanied by a decrease in the content of mitochondrial proteins/respiratory enzymes, indicating the disruption in regulation of cellular respiration.


Immersion , Transcriptome , Female , Humans , Proteomics , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Muscle Fibers, Slow-Twitch/metabolism
5.
Hum Genomics ; 16(1): 24, 2022 07 22.
Article En | MEDLINE | ID: mdl-35869513

BACKGROUND: More than half of human protein-coding genes have an alternative transcription start site (TSS). We aimed to investigate the contribution of alternative TSSs to the acute-stress-induced transcriptome response in human tissue (skeletal muscle) using the cap analysis of gene expression approach. TSSs were examined at baseline and during recovery after acute stress (a cycling exercise). RESULTS: We identified 44,680 CAGE TSS clusters (including 3764 first defined) belonging to 12,268 genes and annotated for the first time 290 TSSs belonging to 163 genes. The transcriptome dynamically changes during the first hours after acute stress; the change in the expression of 10% of genes was associated with the activation of alternative TSSs, indicating differential TSSs usage. The majority of the alternative TSSs do not increase proteome complexity suggesting that the function of thousands of alternative TSSs is associated with the fine regulation of mRNA isoform expression from a gene due to the transcription factor-specific activation of various alternative TSSs. We identified individual muscle promoter regions for each TSS using muscle open chromatin data (ATAC-seq and DNase-seq). Then, using the positional weight matrix approach we predicted time course activation of "classic" transcription factors involved in response of skeletal muscle to contractile activity, as well as diversity of less/un-investigated factors. CONCLUSIONS: Transcriptome response induced by acute stress related to activation of the alternative TSSs indicates that differential TSSs usage is an essential mechanism of fine regulation of gene response to stress stimulus. A comprehensive resource of accurate TSSs and individual promoter regions for each TSS in muscle was created. This resource together with the positional weight matrix approach can be used to accurate prediction of TFs in any gene(s) of interest involved in the response to various stimuli, interventions or pathological conditions in human skeletal muscle.


Gene Expression Regulation , Transcriptome , Humans , Muscle, Skeletal , Promoter Regions, Genetic/genetics , Transcription Initiation Site , Transcriptome/genetics
6.
J Strength Cond Res ; 36(7): 1884-1889, 2022 Jul 01.
Article En | MEDLINE | ID: mdl-33306590

ABSTRACT: Guilherme, JPLF, Semenova, EA, Borisov, OV, Kostryukova, ES, Vepkhvadze, TF, Lysenko, EA, Andryushchenko, ON, Andryushchenko, LB, Lednev, EM, Larin, AK, Bondareva, EA, Generozov, EV, and Ahmetov, II. The BDNF-increasing allele is associated with increased proportion of fast-twitch muscle fibers, handgrip strength, and power athlete status. J Strength Cond Res 36(7): 1884-1889, 2022-The brain-derived neurotrophic factor (BDNF) is involved in neurogenesis and formation of regenerated myofibers following injury or damage. A recent study suggested that the BDNF overexpression increases the proportion of fast-twitch muscle fibers, while the BDNF deletion promotes a fast-to-slow transition. The purpose of this study was to evaluate the association between the BDNF gene rs10501089 polymorphism (associated with blood BDNF levels), muscle fiber composition, and power athlete status. Muscle fiber composition was determined in 164 physically active individuals (113 men, 51 women). BDNF genotype and allele frequencies were compared between 508 Russian power athletes, 178 endurance athletes, and 190 controls. We found that carriers of the minor A-allele (the BDNF-increasing allele) had significantly higher percentage of fast-twitch muscle fibers than individuals homozygous for the G-allele (males: 64.3 [7.8] vs. 50.3 [15.8]%, p = 0.0015; all subjects: 64.1 ± 7.9 vs. 49.6 ± 14.7%, p = 0.0002). Furthermore, the A-allele was associated (p = 0.036) with greater handgrip strength in a sub-group of physically active subjects (n = 83) and over-represented in power athletes compared with controls (7.7 vs. 2.4%, p = 0.0001). The presence of the A-allele (i.e., AA+AG genotypes) rather than GG genotype increased the odds ratio of being a power athlete compared with controls (odds ratio [OR]: 3.43, p = 0.00071) or endurance athletes (OR: 2.36, p = 0.0081). In conclusion, the rs10501089 A-allele is associated with increased proportion of fast-twitch muscle fibers and greater handgrip strength, and these may explain, in part, the association between the AA/AG genotypes and power athlete status.


Brain-Derived Neurotrophic Factor , Hand Strength , Muscle Fibers, Fast-Twitch , Alleles , Athletes , Brain-Derived Neurotrophic Factor/genetics , Female , Hand Strength/physiology , Humans , Male , Muscle Strength/physiology
7.
Biol Sport ; 38(2): 277-283, 2021 Jun.
Article En | MEDLINE | ID: mdl-34079173

Direct determination of muscle fiber composition is invasive and expensive, with indirect methods also requiring specialist resources and expertise. Performing resistance exercises at 80% 1RM is suggested as a means of indirectly estimating muscle fiber composition, though this hypothesis has never been validated against a direct method. The aim of the study was to investigate the relationship between the number of completed repetitions at 80% 1RM of back squat exercise and muscle fiber composition. Thirty recreationally active participants' (10 females, 20 males) 1RM back squat load was determined, before the number of consecutive repetitions at 80% 1RM was recorded. The relationship between the number of repetitions and the percentage of fast-twitch fibers from vastus lateralis was investigated. The number of completed repetitions ranged from 5 to 15 and was independent of sex, age, 1RM, training frequency, training type, training experience, BMI or muscle fiber cross-sectional area. The percentage of fast-twitch muscle fibers was inversely correlated with the number of repetitions completed (r = -0.38, P = 0.039). Participants achieving 5 to 8 repetitions (n = 10) had significantly more fast-twitch muscle fibers (57.5 ± 9.5 vs 44.4 ± 11.9%, P = 0.013) than those achieving 11-15 repetitions (n = 11). The remaining participants achieved 9 or 10 repetitions (n = 9) and on average had equal proportion of fast- and slow-twitch muscle fibers. In conclusion, the number of completed repetitions at 80% of 1RM is moderately correlated with muscle fiber composition.

8.
Biochemistry (Mosc) ; 86(5): 597-610, 2021 05.
Article En | MEDLINE | ID: mdl-33993862

Skeletal muscles comprise more than a third of human body mass and critically contribute to regulation of body metabolism. Chronic inactivity reduces metabolic activity and functional capacity of muscles, leading to metabolic and other disorders, reduced life quality and duration. Cellular models based on progenitor cells isolated from human muscle biopsies and then differentiated into mature fibers in vitro can be used to solve a wide range of experimental tasks. The review discusses the aspects of myogenesis dynamics and regulation, which might be important in the development of an adequate cell model. The main function of skeletal muscle is contraction; therefore, electrical stimulation is important for both successful completion of myogenesis and in vitro modeling of major processes induced in the skeletal muscle by acute or regular physical exercise. The review analyzes the drawbacks of such cellular model and possibilities for its optimization, as well as the prospects for its further application to address fundamental aspects of muscle physiology and biochemistry and explore cellular and molecular mechanisms of metabolic diseases.


Models, Biological , Muscle Development , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Electric Stimulation , Exercise , Gene Expression Regulation , Humans , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism
9.
J Strength Cond Res ; 34(4): 1103-1112, 2020 Apr.
Article En | MEDLINE | ID: mdl-30299394

Lysenko, EA, Popov, DV, Vepkhvadze, TF, Sharova, AP, and Vinogradova, OL. Moderate-intensity strength exercise to exhaustion results in more pronounced signaling changes in skeletal muscles of strength-trained compared with untrained individuals. J Strength Cond Res 34(4): 1103-1112, 2020-The aim of our investigation was to compare the response pattern of signaling proteins and genes regulating protein synthesis and degradation in skeletal muscle after strength exercise sessions performed to volitional fatigue in strength-trained and untrained males. Eight healthy recreationally active males and 8 power-lifting athletes performed 4 sets of unilateral leg presses to exhaustion (65% 1 repetition maximum). Biopsy samples of m. vastus lateralis were obtained before, 1 and 5 hours after cessation of exercise. Phosphorylation of p70S6k, 4EBP1, and ACC increased, whereas phosphorylation of eEF2 and FOXO1 decreased only in the trained group after exercise. Expression of DDIT4, MURF1, and FOXO1 mRNAs increased and expression of MSTN mRNA decreased also only in the trained group after exercise. In conclusion, moderate-intensity strength exercise performed to volitional fatigue changed the phosphorylation status of mTORC1 downstream signaling molecules and markers of ubiquitin-proteasome system activation in trained individuals, suggesting activation of protein synthesis and degradation. In contrast to the trained group, signaling responses in the untrained group were considerably less pronounced. It can be assumed that the slowdown in muscle mass gain as the athletes increase in qualification cannot be associated with a decrease in the sensitivity of systems regulating protein metabolism, but possibly with inadequate intake or assimilation of nutrients necessary for anabolism. Perhaps, the intake of highly digestible protein or protein-carbohydrate dietary supplements could contribute to the increase in muscle mass in strength athletes.


Muscle, Skeletal/metabolism , Resistance Training/methods , Weight Lifting/physiology , Adult , Athletes , Humans , Male , Mechanistic Target of Rapamycin Complex 1/physiology , Muscle Fatigue/physiology , Phosphorylation/physiology , Signal Transduction/physiology , Young Adult
10.
J Strength Cond Res ; 33(10): 2602-2607, 2019 Oct.
Article En | MEDLINE | ID: mdl-31361736

Grishina, EE, Zmijewski, P, Semenova, EA, Cieszczyk, P, Huminska-Lisowska, K, Michalowska-Sawczyn, M, Maculewicz, E, Crewther, B, Orysiak, J, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Bondareva, EA, Erskine, RM, Generozov, EV, and Ahmetov, II. Three DNA polymorphisms previously identified as markers for handgrip strength are associated with strength in weightlifters and muscle fiber hypertrophy. J Strength Cond Res 33(10): 2602-2607, 2019-Muscle strength is a highly heritable trait. So far, 196 single nucleotide polymorphisms (SNPs) associated with handgrip strength have been identified in 3 genome-wide association studies. The aim of our study was to validate the association of 35 SNPs with strength of elite Russian weightlifters and replicate the study in Polish weightlifters. Genotyping was performed using micro-array analysis or real-time polymerase chain reaction. We found that the rs12055409 G-allele near the MLN gene (p = 0.004), the rs4626333 G-allele near the ZNF608 gene (p = 0.0338), and the rs2273555 A-allele in the GBF1 gene (p = 0.0099) were associated with greater competition results (total lifts in snatch and clean and jerk adjusted for sex and weight) in 53 elite Russian weightlifters. In the replication study of 76 sub-elite Polish weightlifters, rs4626333 GG homozygotes demonstrated greater competition results (p = 0.0155) and relative muscle mass (p = 0.046), adjusted for sex, weight, and age, compared with carriers of the A-allele. In the following studies, we tested the hypotheses that these SNPs would be associated with skeletal muscle hypertrophy and handgrip strength. We found that the number of strength-associated alleles was positively associated with fast-twitch muscle fiber cross-sectional area in the independent cohort of 20 male power athletes (p = 0.021) and with handgrip strength in 87 physically active individuals (p = 0.015). In conclusion, by replicating previous findings in 4 independent studies, we demonstrate that the rs12055409 G-, rs4626333 G-, and rs2273555 A-alleles are associated with higher levels of strength, muscle mass, and muscle fiber size.


Athletic Performance/physiology , Hand Strength/physiology , Muscle Fibers, Fast-Twitch/cytology , Muscle Strength/genetics , Weight Lifting/physiology , Adolescent , Adult , Alleles , DNA/analysis , Female , Genome-Wide Association Study , Guanine Nucleotide Exchange Factors/genetics , Homozygote , Humans , Hypertrophy/genetics , Male , Muscle Proteins/genetics , Muscle Strength/physiology , Poland , Polymorphism, Single Nucleotide , Russia , Transcription Factors/genetics , Young Adult
11.
J Strength Cond Res ; 33(9): 2344-2351, 2019 Sep.
Article En | MEDLINE | ID: mdl-31343553

Pickering, C, Suraci, B, Semenova, EA, Boulygina, EA, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Leonska-Duniec, A, Pajak, B, Chycki, J, Moska, W, Lulinska-Kuklik, E, Dornowski, M, Maszczyk, A, Bradley, B, Kana-ah, A, Cieszczyk, P, Generozov, EV, and Ahmetov, II. A genome-wide association study of sprint performance in elite youth football players. J Strength Cond Res 33(9): 2344-2351, 2019-Sprint speed is an important component of football performance, with teams often placing a high value on sprint and acceleration ability. The aim of this study was to undertake the first genome-wide association study to identify genetic variants associated with sprint test performance in elite youth football players and to further validate the obtained results in additional studies. Using micro-array data (600 K-1.14 M single nucleotide polymorphisms [SNPs]) of 1,206 subjects, we identified 12 SNPs with suggestive significance after passing replication criteria. The polymorphism rs55743914 located in the PTPRK gene was found as the most significant for 5-m sprint test (p = 7.7 × 10). Seven of the discovered SNPs were also associated with sprint test performance in a cohort of 126 Polish women, and 4 were associated with power athlete status in a cohort of 399 elite Russian athletes. Six SNPs were associated with muscle fiber type in a cohort of 96 Russian subjects. We also examined genotype distributions and possible associations for 16 SNPs previously linked with sprint performance. Four SNPs (AGT rs699, HSD17B14 rs7247312, IGF2 rs680, and IL6 rs1800795) were associated with sprint test performance in this cohort. In addition, the G alleles of 2 SNPs in ADRB2 (rs1042713 & rs1042714) were significantly over-represented in these players compared with British and European controls. These results suggest that there is a genetic influence on sprint test performance in footballers, and identifies some of the genetic variants that help explain this influence.


Athletic Performance/physiology , Running/physiology , Soccer/physiology , White People/genetics , 17-Hydroxysteroid Dehydrogenases/genetics , Acceleration , Adolescent , Alleles , Angiotensinogen/genetics , Child , Cohort Studies , Female , Genome-Wide Association Study , Genotype , Humans , Insulin-Like Growth Factor II/genetics , Interleukin-6/genetics , Male , Poland , Polymorphism, Single Nucleotide , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Receptors, Adrenergic, beta-2/genetics , Russia , United Kingdom , Young Adult
12.
Physiol Rep ; 7(9): e14100, 2019 05.
Article En | MEDLINE | ID: mdl-31090216

We examined signaling responses in the skeletal muscle of strength athletes after strength exercises under high and moderate load. Eight trained male powerlifters were recruited. The volunteers performed four sets of leg presses to volitional fatigue using a moderate load (65% 1-repetition maximum [1RM]) for one leg, and a high load (85% 1RM) for the contralateral leg. The work volume performed by the leg moving a moderate load was higher than that of the contralateral leg moving a high load. Biopsy of the m. vastus lateralis was performed before, and at 1, 5, and 10 h after, cessation of exercise. Phosphorylation of p70S6kThr389 , 4E-BP1Thr37/46 , and ACCSer79 increased after moderate load exercises, whereas phosphorylation of ERK1/2Thr202/Tyr204 increased, and that of eEF2Thr56 decreased, after high load exercises. Exercise under a moderate load and a high work volume activated mTORC1-dependent signaling in trained skeletal muscle, whereas exercise under a high load but lower work volume activated the MEK-ERK1/2 signaling cascade and eEF2.


Exercise/physiology , Muscle, Skeletal/physiology , Resistance Training/methods , Adult , Athletes , Biopsy , Humans , Hydrocortisone/blood , Lactic Acid/blood , Leg/physiology , Male , Muscle Fatigue/physiology , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Phosphorylation/physiology , Signal Transduction/physiology , Testosterone/blood , Weight-Bearing/physiology , Young Adult
13.
J Strength Cond Res ; 33(3): 691-700, 2019 Mar.
Article En | MEDLINE | ID: mdl-30694969

Guilherme, JPLF, Egorova, ES, Semenova, EA, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Ospanova, EA, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Govorun, VM, Generozov, EV, Ahmetov, II, and Lancha Junior, AH. The A-allele of the FTO gene rs9939609 polymorphism is associated with decreased proportion of slow oxidative muscle fibers and over-represented in heavier athletes. J Strength Cond Res 33(3): 691-700, 2019-The purpose of this study was to explore the frequency of the FTO T > A (rs9939609) polymorphism in elite athletes from 2 cohorts (Brazil and Russia), as well as to find a relationship between FTO genotypes and muscle fiber composition. A total of 677 athletes and 652 nonathletes were evaluated in the Brazilian cohort, whereas a total of 920 athletes and 754 nonathletes were evaluated in the Russian cohort. It was found a trend for a lower frequency of A/A genotype in long-distance athletes compared with nonathletes (odds ratio [OR]: 0.65; p = 0.054). By contrast, it was found an increased frequency of the A-allele in Russian power athletes. The presence of the T/A + A/A genotypes rather than T/T increased the OR of being a Russian power athlete compared with matched nonathletes (OR: 1.45; p = 0.002). Different from that observed in combat sports athletes of lighter weight categories, the A-allele was also over-represented in combat sports athletes of heavier weight categories. The presence of the T/A + A/A genotypes rather than T/T increased the OR of being a combat sports athlete of heavier weight categories compared with nonathletes (OR: 1.79; p = 0.018). Regarding the muscle fibers, we found that carriers of the A/A genotype had less slow-twitch muscle fibers than T-allele carriers (p = 0.029). In conclusion, the A/A genotype of the FTO T > A polymorphism is under-represented in athletes more reliant on a lean phenotype and associated with decreased proportion of slow-twitch muscle fibers, while is over-represented in strength and heavier athletes.


Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Athletes , Body Weight/physiology , Muscle Fibers, Slow-Twitch/metabolism , Muscle Strength/physiology , Sports/physiology , Adult , Alleles , Brazil , Cohort Studies , Female , Genotype , Humans , Male , Oxidative Stress , Phenotype , Polymorphism, Single Nucleotide , Russia , Young Adult
14.
Biol Sport ; 35(3): 277-289, 2018 Sep.
Article En | MEDLINE | ID: mdl-30449946

We investigated acute exercise-induced gene expression in skeletal muscle adapted to aerobic training. Vastus lateralis muscle samples were taken in ten endurance-trained males prior to, and just after, 4 h, and 8 h after acute cycling sessions with different intensities, 70% and 50% V ˙ O 2 max . High-throughput RNA sequencing was applied in samples from two subjects to evaluate differentially expressed genes after intensive exercise (70% V ˙ O 2 max ), and then the changes in expression for selected genes were validated by quantitative PCR (qPCR). To define exercise-induced genes, we compared gene expression after acute exercise with different intensities, 70% and 50% V ˙ O 2 max , by qPCR. The transcriptome is dynamically changed during the first hours of recovery after intensive exercise (70% V ˙ O 2 max ). A computational approach revealed that the changes might be related to up- and down-regulation of the activity of transcription activators and repressors, respectively. The exercise increased expression of many genes encoding protein kinases, while genes encoding transcriptional regulators were both up- and down-regulated. Evaluation of the gene expression after exercise with different intensities revealed that some genes changed expression in an intensity-dependent manner, but others did not: the majority of genes encoding protein kinases, oxidative phosphorylation and activator protein (AP)-1-related genes significantly correlated with markers of exercise stress (power, blood lactate during exercise and post-exercise blood cortisol), while transcriptional repressors and circadian-related genes did not. Some of the changes in gene expression after exercise seemingly may be modulated by circadian rhythm.

15.
J Physiol Sci ; 68(1): 43-53, 2018 Jan.
Article En | MEDLINE | ID: mdl-27913948

We tested whether post exercise ingestion of branched-chain amino acids (BCAA < 10 g) is sufficient to activate signaling associated with muscle protein synthesis and suppress exercise-induced activation of mechanisms associated with proteolysis in endurance-trained human skeletal muscle. Nine endurance-trained athletes performed a cycling bout with and without BCAA ingestion (0.1 g/kg). Post exercise ACCSer79/222 phosphorylation (endogenous marker of AMPK activity) was increased (~3-fold, P < 0.05) in both sessions. No changes were observed in IGF1 mRNA isoform expression or phosphorylation of the key anabolic markers - p70S6K1Thr389 and eEF2Thr56 - between the sessions. BCAA administration suppressed exercise-induced expression of mTORC1 inhibitor DDIT4 mRNA, eliminated activation of the ubiquitin proteasome system, detected in the control session as decreased FOXO1Ser256 phosphorylation (0.83-fold change, P < 0.05) and increased TRIM63 (MURF1) expression (2.4-fold, P < 0.05). Therefore, in endurance-trained human skeletal muscle, post exercise BCAA ingestion partially suppresses exercise-induced expression of PGC-1a mRNA, activation of ubiquitin proteasome signaling, and suppresses DDIT4 mRNA expression.


Amino Acids, Branched-Chain/administration & dosage , Exercise/physiology , Muscle, Skeletal/drug effects , Physical Endurance/drug effects , Proteasome Endopeptidase Complex/metabolism , Signal Transduction/drug effects , Ubiquitin/metabolism , Adolescent , Adult , Humans , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Phosphorylation/drug effects , Physical Endurance/physiology , RNA, Messenger/metabolism , Young Adult
16.
Exp Physiol ; 102(3): 366-375, 2017 03 01.
Article En | MEDLINE | ID: mdl-28074493

NEW FINDINGS: What is the central question of this study? This study was designed to investigate the role of AMPK in the regulation of PGC-1α gene expression via the alternative promoter through a cAMP response element-binding protein-1-dependent mechanism in human skeletal muscle. What is the main finding and its importance? Low-intensity exercise markedly increased the expression of PGC-1α mRNA via the alternative promoter, without increases in ACCSer79/222 (a marker of AMPK activation) and AMPKThr172 phosphorylation. A single dose of the AMPK activator metformin indicated that AMPK was not involved in regulating PGC-1α mRNA expression via the alternative promoter in endurance-trained human skeletal muscle. In human skeletal muscle, PGC-1α is constitutively expressed via the canonical promoter. In contrast, the expression of PGC-1α mRNA via the alternative promoter was found to be highly dependent on the intensity of exercise and to contribute largely to the postexercise increase of total PGC-1α mRNA. This study investigated the role of AMPK in regulating PGC-1α gene expression via the alternative promoter through a cAMP response element-binding protein-1-dependent mechanism in human skeletal muscle. AMPK activation and PGC-1α gene expression were assayed in skeletal muscle of nine endurance-trained men before and after low-intensity exercise (38% of maximal oxygen uptake) and with or without administration of a single dose (2 g) of the AMPK activator metformin. Low-intensity exercise markedly and significantly increased (∼100-fold, P < 0.05) the expression of PGC-1α mRNA via the alternative promoter, without increasing ACCSer79/222 (a marker of AMPK activation) and AMPKThr172 phosphorylation. Moreover, in contrast to placebo, metformin increased the level of ACCSer79/222 phosphorylation immediately after exercise (2.6-fold, P < 0.05). However postexercise expression of PGC-1α gene via the alternative promoter was not affected. This study was unable to confirm that AMPK plays a role in regulating PGC-1α gene expression via the alternative promoter in endurance-trained human skeletal muscle.


AMP-Activated Protein Kinases/metabolism , Exercise/physiology , Gene Expression/genetics , Muscle, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Promoter Regions, Genetic/genetics , Adult , Amino Acid Sequence , Base Sequence , Humans , Male , Phosphorylation/genetics , Physical Endurance/genetics , Physical Endurance/physiology , RNA, Messenger/metabolism , Young Adult
17.
J Mol Endocrinol ; 55(2): 159-68, 2015 Oct.
Article En | MEDLINE | ID: mdl-26293291

The goal of this study was to identify unknown transcription start sites of the PPARGC1A (PGC-1α) gene in human skeletal muscle and investigate the promoter-specific regulation of PGC-1α gene expression in human skeletal muscle. Ten amateur endurance-trained athletes performed high- and low-intensity exercise sessions (70  min, 70% or 50% o2max). High-throughput RNA sequencing and exon-exon junction mapping were applied to analyse muscle samples obtained at rest and after exercise. PGC-1α promoter-specific expression and activation of regulators of PGC-1α gene expression (AMPK, p38 MAPK, CaMKII, PKA and CREB1) after exercise were evaluated using qPCR and western blot. Our study has demonstrated that during post-exercise recovery, human skeletal muscle expresses the PGC-1α gene via two promoters only. As previously described, the additional exon 7a that contains a stop codon was found in all samples. Importantly, only minor levels of other splice site variants were found (and not in all samples). Constitutive expression PGC-1α gene occurs via the canonical promoter, independent of exercise intensity and exercise-induced increase of AMPK(Thr172) phosphorylation level. Expression of PGC-1α gene via the alternative promoter is increased of two orders after exercise. This post-exercise expression is highly dependent on the intensity of exercise. There is an apparent association between expression via the alternative promoter and activation of CREB1.


Gene Expression Regulation/genetics , Muscle, Skeletal/metabolism , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Transcription Initiation Site , AMP-Activated Protein Kinases/metabolism , Athletes , Base Sequence , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Enzyme Activation/genetics , Exercise , Exons/genetics , High-Throughput Nucleotide Sequencing , Humans , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phosphorylation , Sequence Analysis, RNA , Transcription Factors/biosynthesis , p38 Mitogen-Activated Protein Kinases/metabolism
...